THE ACCURATERELOADING.COM BACKPACK HUNTING FORUM

Accuratereloading.com    The Accurate Reloading Forums    THE ACCURATE RELOADING.COM FORUMS  Hop To Forum Categories  Hunting  Hop To Forums  Backpack Hunting    US Army Tests of Commercial Water Filters

Moderators: Canuck
Go
New
Find
Notify
Tools
Reply
  
US Army Tests of Commercial Water Filters
 Login/Join
 
Moderator
posted
Appologies if this has been posted before, but it looks very useful information:
Water Filter Tests
 
Posts: 5684 | Location: North Wales UK | Registered: 22 May 2002Reply With Quote
one of us
posted Hide Post
Thank you Pete, this is excellent.
 
Posts: 694 | Location: Des Moines, Iowa, USA | Registered: 09 January 2001Reply With Quote
One of Us
Picture of scubapro
posted Hide Post
Well, I can´t follow some test results on one hand: for my experience the MSR Waterworks is one of the best working filters and I prefer a mechanical filter much more than one of those "we put salt and battery together into filters"...
(what happens when the battery is empty... :-))) )


life is too short for not having the best equipment You could buy...
www.titanium-gunworks.de
 
Posts: 759 | Location: Germany | Registered: 30 March 2006Reply With Quote
Moderator
posted Hide Post
quote:
Originally posted by scubapro:
Well, I can´t follow some test results on one hand: for my experience the MSR Waterworks is one of the best working filters and I prefer a mechanical filter much more than one of those "we put salt and battery together into filters"...
(what happens when the battery is empty... :-))) )


Looking a the test results & additional information for the MSR Waterworks, it states:

"Device is not designed for virus reduction and therefore, unable to fully meet the pathogen reduction requirements of the USEPA Guide Standard and Protocol for Testing Microbiological Water Purifiers.
• Additional treatment required. "

Do you dissagree with that statement?

Regards,

Pete
 
Posts: 5684 | Location: North Wales UK | Registered: 22 May 2002Reply With Quote
One of Us
posted Hide Post
quote:
Originally posted by Pete E:

Looking a the test results & additional information for the MSR Waterworks, it states:

"Device is not designed for virus reduction and therefore, unable to fully meet the pathogen reduction requirements of the USEPA Guide Standard and Protocol for Testing Microbiological Water Purifiers.
• Additional treatment required. "

Do you dissagree with that statement?

Regards,

Pete


Sorry to say, but NO mechanical only filter currently made will protect you from waterborne viruses.

You've got to put up with the swimming pool or iodine taste in areas where you might encounter viruses. OR..... use mechanical filter and then boil!

PS - PeteE, I'm dissappointed that they didn't test the Katadyn Vario. Yes, it's a mechanical only water filter.... but it's perfect for use in Colorado. Cost only around $80.
 
Posts: 49226 | Registered: 21 January 2001Reply With Quote
Moderator
posted Hide Post
Daman,

Just curious, but don't you consider a viruses a threat in Colorado???

I can't say too much as I use an ex army issue millbag for course filtration, and then puritabs or similar for disinfection but after reading the details on this site, will be reconsidering this approach..

You've got to be careful how you read the results on that site as they are not exactly clear.

If you look at the various Disinfectants listed, and the chemicals they use, you will see that although a number use chlorine dioxide, only one of those, the Micropur MP 1 tablets, gets a tick to say it will deal with Crypto....

I was confused by this until I read the details. It seems that the other company's simply don't recommend a high enough dose, nor a long enough wait period to meet the requirements. So there are quite a few products, that if used in a similar manner to the Micrpur MP 1 tablets, will work equally well...The devil, as they say, is in the the detail!

Regards,

Pete
 
Posts: 5684 | Location: North Wales UK | Registered: 22 May 2002Reply With Quote
one of us
posted Hide Post
We, as backpack hunters, can be more area specific as far as gear goes....the scope of the majority of the military's need goes far beyond our needs and requires some generalization for great numbers of people to use successfully in many different places....in many cases, our military provides less than adequate gear but pays much more than it's worth.....our military deserves better then that.

There's some decent info to be gleaned from the reports and thanks to Pete E for providing the link....I think, in spite of the military tests, I'll continue to use a SteriPen for my water treatment needs.....

Joe


Where there's a hobble, there's hope.
 
Posts: 369 | Location: Homer, Alaska | Registered: 04 February 2004Reply With Quote
One of Us
posted Hide Post
"You've got to put up with the swimming pool or iodine taste in areas where you might encounter viruses. OR..... use mechanical filter and then boil!"

Not so, the Steripen will kill viruses. I believe the MSR Miox system will too.


"No one but he who has partaken thereof can understand the keen delight of hunting in lonely lands."
 
Posts: 59 | Location: Colorado | Registered: 23 June 2006Reply With Quote
One of Us
posted Hide Post
quote:
Just curious, but don't you consider a viruses a threat in Colorado???


Generally speaking.... no. At least not where I go.

There are exceptions. Norovirus has been found in the Colorado River in the four corners area.
 
Posts: 49226 | Registered: 21 January 2001Reply With Quote
One of Us
posted Hide Post
You'd be surprised where you can find viruses (viri?)----everywhere. I was surprised to learn that virus researchers were concentrating on the Canadian prairies for their work. Seems there are more in a prairie pothole than almost any other place on Earth. When it comes to water I consider it all contaminated. After seeing what a case of gardia can do to a person and the long term health implications, who wouldn't ?

the chef
 
Posts: 2763 | Registered: 11 March 2004Reply With Quote
Moderator
posted Hide Post
quote:
Originally posted by COphil:
"Not so, the Steripen will kill viruses.


COphil, Joe,

It would seem that independent testing takes the opposite view..

From the News and Updates section of the same site:

"Hydro-Photon SteriPEN™ Device Evaluation Update – February 2006

Independent laboratory results were received that tested the Hydro-Photon, Inc., SteriPEN against the USEPA Guide Standard. Testing was conducted using the UV portion of the protocol with a production volume of 4 L/day for 10.5 days. Testing was conducted in 16-32 oz. batches. Testing followed the dosimetry method described in NSF Standard 55 that measures UV dose and correlates it with MS-2 kill. Based on the MS-2 stock used, a kill of 2-log or greater was determined to be adequate to be considered a water purifier, and therefore, effective at reducing pathogens. Collimated beam testing indicated that this reduction equated to a dose of 40 mJ/cm2. Results indicated that this device did not meet the minimum log reduction requirements based on MS-2 kill. Initially, this device did meet the 2-log required reduction, but this reduction decreased by Day 6. On the following days, under higher turbidity water, the device performed poorly, with less than 1-log kill. This performance is expected in turbid waters where UV transmittance is limited. The turbidity levels during this testing were 100-470 NTU, well above the ≥30 NTU requirement, however, this device did not meet the required log reductions in relatively clear type 1 water. Based on this testing, it is not likely that this device will consistently meet the log reduction requirements under any water conditions. There is no change to the pathogen reduction ratings previously stated (bacteria:X virus:X Giardia:X Cryptosporidium: X).

Its clear from those test results, that the device does not *reliably* meet any of the key performance criteria....it doesn't reliably offer protection against bacteria, viruses, giardia nor crypto...

MSR - MIOX performs much better in the tests, but still fails to meet the criteria for reducing crypto to acceptable levels. It would seem the problem they have is not the the product itself, but simply the instructions for use.
If it came with the same instructions as the Micropur MP 1 Tablets ie a recommended 4 hour dwell time, it would probably pass...

I was surprised how poorly the various PreMac products perform as some of those are on issue to the British military...In fact, I had been considering buying the PreMac - Model SWP as a small portable purifier as a step up from my present arrangements, but I think I will do some more research now...

Regards,

Pete
 
Posts: 5684 | Location: North Wales UK | Registered: 22 May 2002Reply With Quote
one of us
posted Hide Post
Pete E,

I don't believe I stated anything about killing viruses.....as I stated, the military has to use gear that will work in every possible situation, which can also mean it might not work as well as a specialized piece of gear needed in some situations......the SteriPen "inables" viruses, bacteria, micro-organisms, etc, and renders them harmless to humans.....I've used it from the east coast of the US, throughout Canada and Alaska and it works AS ADVERTISED.....one other point, gleaned from different sites on the net, is that animal viruses infect animals and human viruses infect humans; yes, there are some crossovers but not as many as one would believe.(bird virus comes to mind)
As I stated in my previous post, we, as backpack hunters, can be area specific when it comes to gear. The military"s summary of the SteriPen included, "The SteriPen is not likely to cause any adverse health effects when used AS DIRECTED." That has been my personal experience and I'm not saying it's for everyone.....works for me.

Before using SteriPen and filters , I contracted Cryptosporidium twice and Giardia several times before I started to use a filter....even now though, there is an area up north that I drink from the creeks and springs and do not use a filter or treatment.....very special place!

Joe


Where there's a hobble, there's hope.
 
Posts: 369 | Location: Homer, Alaska | Registered: 04 February 2004Reply With Quote
One of Us
posted Hide Post
quote:
Not so, the Steripen will kill viruses. I believe the MSR Miox system will too.


It's my understanding that the Miox system also gives treated water that "chlorine" taste.

The report above did not speak favorably of the SteriPen. But then I haven't heard of anybody getting sick drinking water treated with the SteriPen and there a several other tests that say it's great.
 
Posts: 49226 | Registered: 21 January 2001Reply With Quote
one of us
posted Hide Post
DaMan,

AquaStar also makes a UV treatment device that works equally as well as SteriPen......I question why, if the military's tests prove their inefficiency, the "substandard(?)" treatment gear is not pulled from the store shelves or why someone, who has gotten ill from a failure, hasn't sued the companies that produce these items...... Smiler?

I'm sure the military has sound reasons for the tests but I think(my opinion only) the tests are more about splitting hairs than actual need.....if there's really a question about any water you wish to treat for consumption, just boil it.....I think most backpack hunters have the means to build a fire w/them whenever they head out.

Joe


Where there's a hobble, there's hope.
 
Posts: 369 | Location: Homer, Alaska | Registered: 04 February 2004Reply With Quote
One of Us
posted Hide Post
The UV type treatment is less effective in turbid water. Makes sense. UV rays simply can't penetrate the turbid water as well as fairly clear water. This might be the reason the UV type units wouldn't make good "stand alone" units for the military.
 
Posts: 49226 | Registered: 21 January 2001Reply With Quote
One of Us
posted Hide Post
Question to all ! what has happened to our water since the mid 1800's and before ? Cattle drives ,Wagon trains , gold rush seekers ,settling in new lands in the old west , how did people treat the water they drank back then ? on this North American continent ?
 
Posts: 497 | Location: PA | Registered: 24 May 2005Reply With Quote
one of us
Picture of Vibe
posted Hide Post
Concho. The quick answer is not much has happened to the water. One reason that the railroads used so much oriental labor was that they were ill less often. They were ill less often because they drank tea..The process of making tea involved boiling the water, thus sterilizing it. There have been some increases in chemical polutions in more modern days though, and that includes in captured rainfall - runnoff can be either worse of a bit better depending on the reactivity of the soil.


The opinion of 10,000 men is of no value if none of them know anything about the subject.
- Marcus Aurelius -
 
Posts: 211 | Location: Little Rock, AR. USA | Registered: 23 May 2002Reply With Quote
one of us
posted Hide Post
Trying to post some interesting reading......hope it works....

Joe

4 June 2003
Giardia lamblia and Giardiasis
With Particular Attention to the Sierra Nevada
By Robert L. Rockwell
Figure 1. Trophozoite Emerging from Cyst1 Figure 2. Trophozoite Undergoing Division1
Introduction
Ask the average outdoors person about Giardia lamblia, and they have certainly heard about it.
Almost always, however, they are considerably misinformed about both the organism’s significance in
wilderness water and the seriousness of the disease, giardiasis, if contracted.
The amount of information easily found on the subject is voluminous. Unfortunately, almost all of it
is flawed in important aspects, being unsubstantiated, anecdotal or speculative. Official informational
publications put out by the United States government are far from immune to this criticism.
This paper is the result of a critical distillation of relevant articles, retaining only those from
scholarly, peer-reviewed, or otherwise professional and trustworthy sources.
One conclusion of this paper is that you can indeed contract giardiasis on visits to the high mountains
of the Sierra Nevada, but it almost certainly won’t be from the water. So drink freely and confidently.
Proper personal hygiene is far more important in avoiding giardiasis than treating the water.
First, an excerpt written by a highly regarded wilderness physician:
“In recent years, frantic alarms about the perils of giardiasis have aroused exaggerated
concern about this infestation. Government agencies, particularly the United States Park
Service and the National Forest Service, have filtered hundreds of gallons of water from
wilderness streams, found one or two organisms (far less than enough to be infective),
and erected garish signs proclaiming the water ‘hazardous.’â€2
And another, by researchers who surveyed the health departments in all 50 states and scanned the
medical literature looking for evidence that giardiasis is a significant threat to outdoor people:
“Neither health department surveillance nor the medical literature supports the widely
held perception that giardiasis is a significant risk to backpackers in the United States.
In some respects, this situation resembles (the threat to beachgoers of) a shark attack: an
2
extraordinarily rare event to which the public and press have seemingly devoted
inappropriate attention.â€3
I first explored this subject in 19874 and again in 19965, with an update in 19976. The emphasis has
always been to waters of the High Sierra—“High†meaning elevations of 8,000 or 9,000 feet and
above—but much of the material applies to wilderness water at lower elevations and beyond the Sierra.
Since 1997 a wealth of additional information resulted in a follow-on paper7 that was not published
in the usual sense, but was made available to several mountaineering and hiking organizations. As even
newer data became available I incorporated it, keeping the same title but amending the date. These
various versions were picked up by a number of additional websites,i and have migrated further.
In 2002, having seen the paper on one of these websites, an editor at National Geographic Adventure
magazine contacted me for details. The staff at NGA then independently examined the information and
research, and wrote their own article.8 That article verified the findings of this paper.
From the beginning, the conclusions have always been that “the Giardia problem†in the High Sierra
and elsewhere is grossly exaggerated, and that virtually all of the few cases of giardiasis subsequent to
wilderness visits are wrongly blamed on the water. After incorporating the most recent information,
those prior conclusions are not only still valid but also considerably reinforced.
Just who is this little guy, anyway? ii 9, 10, 11, 12, 13
The parasite Giardia lamblia, now known also as G. intestinalis or G. duodenalis, was first observed
in 1681 by Anton van Leeuwenhoek, inventor of the microscope. It was named in 1915 for two
scientists who had studied it: Prof. A. Giard in Paris and Dr. F. Lambl in Prague. There are species of
Giardia other than G. lamblia (e.g., G. muris) that infect small rodents, amphibians, birds and fishes, but
they aren’t passed on to humans and most other mammals.14 This paper deals exclusively with G.
lamblia.
Giardia is a flagellated (having whip-like appendages for locomotion) protozoan that, in the
trophozoite (active) form, attaches itself with an adhesive disk to the lining of the upper intestinal tract
of the host animal. There, it feeds and reproduces. Trophozoites divide by binary fission about every 12
hours, so a single parasite can theoretically result in more than a million in 10 days and a billion in 15
days.
At some time in its active life, the trophozoite releases its hold on the bowel wall and floats in the
fecal stream. As it makes its journey, it transforms into an egg-like structure called a cyst, which is
eventually passed in the stool. Duration of cyst excretion, called shedding, may persist for months.
Once outside the body, the cysts can be ingested by another animal. Then, they “hatch†into trophozoites
due to stomach acid action and digestive enzymes, and the cycle repeats.
The trophozoite is 9 – 15 microns long, 5 - 15 microns wide, and 2 - 4 microns thick. Unlike the
cyst, it cannot live for long outside a host.
Cysts are 8 - 12 microns long by 6 - 9 microns in diameter, so a million could fit under a fingernail.
Cysts can survive for as long as 2 to 3 months in cold water, but they cannot tolerate drying or
freezing.12, 13, 15, 16, 17, 18 They are also destroyed by UV radiation, heat and biocides such as bleach.15
A significant infestation can leave millions of trophozoites stuck tight to the intestinal lining. There,
they cripple the gut’s ability to secrete enzymes and absorb food, especially fats, thereby producing the
disease’s symptoms. The symptoms typically appear one to two weeks after ingestion, with an average
i Examples: http://www.yosemite.org/naturenotes/Giardia.htm, http://lomaprieta.sierraclub.org/pcs/articles/giardia.asp,
http://highadventure.bsadpc.org/wisdom.htm and http://www.uoregon.edu/~opp/ws/wildsurvival.htm.
ii When a reference number appears after the title of a section, such as here, that reference has been used repeatedly within the
section. When a reference number appears embedded in a section, information from that reference has been used for that
specific statement or concept.
3
of nine days, but four weeks is not uncommon. Symptoms can vanish suddenly and then reappear. They
may hide for months. They may not appear at all.13, 19
There are three ways that giardiasis, the disease caused by Giardia infections, can be contracted:
contaminated water, contaminated food, and direct fecal-oral. A person who has just come down with
the disease and who wishes to identify the source needs to reflect on not only the possibility of each of
these pathways, but in a suspect period ranging from typically one week earlier to four weeks earlier.
The bad news: Giardia lamblia is everywhere 2, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 25, 26
Giardiasis has been most often associated with travel to such places as Latin America, Africa, Asia,
and the former Soviet Union. However, Giardia has always been present in wilderness streams, in the
water supplies of most cities around the world, and even in the municipal water of large U. S. cities. In
fact, in the 1930s and 1940s, before regulated municipal water treatment plants, we were all ingesting
Giardia all the time.27
Giardia lamblia is the most commonly diagnosed intestinal parasite in North America.31 It is the
most frequently identified cause of diarrheal outbreaks associated with drinking water in this country.
To be classified a disease outbreak, the US Centers for Disease Control and Prevention (CDC) must
have implicated the source, and there must be multiple cases. For 1999 – 2000, there were 39 drinking
water disease outbreaks (all causes) in the US, involving 2068 persons. 28 This is an average of 53
persons per outbreak, but sometimes a single outbreak can be devastating: In 1993, Cryptosporidium
managed to get through Milwaukee’s water treatment system and sickened 403,000 people. 29 We take
drinking water for granted in this country, but it is far from being completely trustworthy.
Figure 3. Number of Drinking Water Disease Outbreaks, by Year and Cause28
(AGI = Acute Gastrointestinal Illness of unknown cause)
Estimates vary, but fully 20 percent of the world’s population have giardiasis, and 4 to 7 percent of
Americans, most without any symptoms at all.13, 15, 16, 30 The CDC estimates that as many as 2,500,000
cases occur in the US, or about one for every 100 persons—every year.31
Infestation rates of 50 percent of the children in day care centers across the country have been noted,
with many being asymptomatic.32 Institutions for mentally retarded persons can have high rates. Other
high-rate populations include promiscuous male homosexuals, international travelers, and patients with
cystic fibrosis. And family members of these individuals.
In an incident in New Jersey a child had a “fecal accident†in a community swimming pool, and nine
swimmers came down with the disease.33 How many Giardia cysts might have been involved? The
4
number of cysts shed in feces is highly variable but has been estimated as high as 900 million a day for a
human.24
Municipal water utilities must use filters to remove the organism. San Francisco city water, coming
primarily from the Hetch Hetchy watershed in Yosemite National Park, tested positive for Giardia about
23 percent of the time in 2000, although at very low levels: fewer than 0.12 cysts per literiii. This water
is of such high quality that the US Environmental Protection Agency and the California Department of
Health Services have granted Hetch Hetchy water a filtration exemption, meaning that filtration
treatment to ensure its safety from Giardia and other organisms is not required.34
The city of Fairfield, 45 miles northeast of San Francisco, stated in 2001, “Giardia cysts were
detected three times at levels of 0.19, 0.21 and 0.50 cysts per liter. At these levels, the source water is
considered an insignificant risk for Giardia.†35
The Los Angeles Aqueduct, which transports water to that city from the eastern slopes of the Sierra
Nevada—where many wilderness visitors obtain their water directly—averages an even lower 0.03 cysts
per liter.36
Of course, there are contaminants other than Giardia to worry about, and most water districts treat
their water before distribution.
Drinking contaminated water is one way to get the disease. Less common in developed countries is
direct passage from stool to the hands of a food preparer and then to the food itself. When 16 people got
sick from the salad at a Connecticut picnic, the CDC tracked the source to a woman who had mixed the
salad with her hands. She didn’t have giardiasis, but one of her children did—without any symptoms.19
A similar situation occurred in New Jersey, with the salad preparer testing positive for Giardia along
with her child and pet rabbit.37
There is accumulating data that Giardia is one of the most common parasites of companion animals
throughout the world. The problem is greater in multi-pet homes, due to the ease of infection from one
pet to another—more so if the pets come in contact with animals outside the home.14 And, because of
the generally close and frequent contact with their pets, it is easy for infections to flow to household
members.
Commercially prepared food can sometimes be tainted if it is moist and not cooked. For example,
one outbreak of giardiasis was traced to Giardia in canned salmon.38
Contaminated food may be an unlikely source for the general population in this country but, for
wilderness visitors, it may be the most common one. Put another way: If the water is clean—a topic
explored in this paper—food-borne and direct fecal-oral routes are the only pathways.
On a climbing expedition to Tibet in 1993, members of our party came down again and again with
what was undoubtedly giardiasis. Our water came from glacial melt, but all our food in advanced base
camp and below was prepared by Sherpa cooks. Most of the food they prepared—potatoes, rice,
cauliflower, cabbage, onions—came from Nepal. We were continually assured that the cooks were
practicing good hygiene, yet we had major intestinal problems that prevented many of the participants
from getting high on the mountain.
The disease has been referred to as “beaver fever†because of a presumed link to those waterdwelling
animals known to be carriers. However, it now appears that it is more likely that humans have
carried the parasite into the wilderness and that beavers may actually be the victims. In particular, there
is a growing amount of data showing that beavers living downstream from campgrounds have a high
Giardia infection rate compared with a near-zero rate for beavers living in more remote areas.
In either case, beavers can and do contract giardiasis. Being water-dwellers, they are able to
contaminate water more directly than an animal that defecates on the ground.
iii The referenced sources use a variety of units for portraying cyst concentration: cysts per 100 liters, per 100 gallons, etc.
For uniformity, all have been converted to cysts per liter.
5
Table 1. Prevalence of Enteric Pathogens in Humans, Cattle, Pigs and Poultry16
Other animals that can harbor Giardia lamblia are bighorn sheep, cats, cattle, coyotes, deer, dogs,
elk, muskrats, pet rabbits, pigs, raccoons and squirrels. But naturally occurring infections have not been
found in most wild animals including badgers, bears, bobcats, ferrets, lynxes, marmots, moose,
porcupines, skunks and wild rabbits. Horses and domestic sheep were once thought to be Giardia-free,
but more recent studies have shown that they can be infected.15, 39, 40
Most strains of Giardia lamblia in animals can cause human infections, but some (e.g., in pigs) are
apparently unlikely to do so.16
If “It’s everywhere!†why is it not more of a problem?
The good news: Most of the time, the concentration of Giardia cysts is very low 2, 9, 11
Outside of places where “fecal accidents†occur, dirty diapers congregate, and cities where water
treatment plants break down or are ineffective, there is little room to worry. A few Giardia cysts will
cause no harm, and in fact may be useful in acquiring immunity to the disease.
How many cysts does it take to get the disease? Theoretically, only one. But there are no
documented cases of giardiasis being contracted from such low levels.8 Volunteer studies have shown
that 10 or more are required to have a reasonable probability of it, with about one-third of persons
ingesting 10 – 25 cysts getting detectable cysts in their stools.9, 10, 11, 13, 41, 42
But be careful with statistics: Animal droppings containing 100,000 Giardia cysts deposited at the
edge of a 10 million liter lake may be an average of only 0.01 per liter for the lake as a whole, but in the
immediate vicinity of the deposit, the concentration can be much greater.
Table 2. Survival of Animal Fecal Pathogens in the Environment16
6
A comforting observation is that significant cyst inactivation, as high as 99.9 percent, can occur as a
result of anaerobic digestion in sewage sludge.43 Using a simple cat hole is not exactly a good
approximation to the sewage plant process, but this points out the wisdom of burying it. On the other
hand, cysts perish in a day or less on dry surfaces or when frozen,15, 16 so leaving it exposed to air makes
some sense when burial is not feasible—especially when below-freezing temperatures are expected.
Since cysts that “winter over†in the Sierra Nevada are either in liquid water for considerably more
than 2 to 3 months, or exposed to freezing temperatures, few—if any—survive the harsh Sierra winters.
So, except for pollution by winter visitors and non-hibernating animals, Giardia contamination in the
high country must begin essentially anew each spring.
The viability of Giardia cysts found in water is commonly assumed to be high, but monitoring
experiments suggest otherwise. Subsequent to a drinking water outbreak in Ontario, Canada, in 1994,
approximately half of the cysts found were dead.44
More good news: If you get a Giardia infection, you are unlikely to have symptoms 2, 9, 10, 21, 22, 45, 46
The symptoms of giardiasis vary widely. Characteristic symptoms, when they occur, are mild to
moderate abdominal discomfort, abdominal distention due to increased intestinal gas, sulfurous or
“rotten egg†burps, horrific flatulence, and mild to moderate diarrhea. Stools are soft (but not liquid),
bulky, and foul smelling. They have been described as greasy and frothy, and they float on the surface of
water. Nausea, weakness, and loss of appetite may occur, but fever is uncommon. Studies have shown
that giardiasis can be suspected when the illness lasts seven or more days with at least two of the above
symptoms.10
However, most infected individuals have no symptoms at all. In a 1977 incident carefully studied by
the CDC, disruption in the Berlin, New Hampshire’s water disinfection system allowed the entire
population to consume water heavily contaminated with Giardia. Yet only 11 percent of the exposed
population developed symptoms even though 46 percent had organisms in their stools. These figures
suggest that (a) even when ingesting large amounts of the parasite, the chance of contracting giardiasis is
less than 1 in 2, and (b) if you are one of the unlucky ones to contract it, the chance of having symptoms
is less than 1 in 4. But perhaps the most useful statistic is that drinking heavily contaminated water
resulted in symptoms of giardiasis in only 1 case in 9. 2, 8, 47
If you have symptoms it may not be giardiasis 2, 10, 19, 22, 48
Many people claim that they “got it†on a particular trip into the wilderness. Yet, upon questioning,
they usually report that the presence of Giardia was not confirmed in the laboratory. (Only 8 percent of
persons with a diarrheal illness in this country seek medical care.31) Depending on the situation, other
likely offenders are Campylobacter, Cryptosporidium, Salmonella, Shigella, Yersinia, Aeromonas,
Clostridia, and some strains of Escherichia coli, with the last being the most common cause of traveler’s
diarrhea worldwide. Food poisoning is also a possibility.
Cryptosporidiosis, in particular, is a growing problem in this country and, currently, there is no
effective treatment for it. An outbreak in Milwaukee in 1993 caused 403,000 people to become ill and
100 to die. A year later, 43 people in Las Vegas died from the same disease.29
The severity of cryptosporidiosis depends on the condition of the host’s immune system. In immunologically
normal people, symptoms and duration are similar to those of giardiasis. But in persons
whose immune systems have been compromised (e.g., AIDS victims), symptoms can be profound:
Frequent (up to 25), voluminous (up to 25 liters) daily bowel movements, serious weight loss, and cyst
shedding often persist for months.
The diarrhea being blamed on Giardia from that Sierra trip a week ago may instead be due to some
spoiled food eaten last night or Campylobacter in undercooked chicken four days ago. Or, because the
7
incubation period is usually from one to four weeks, even if it is giardiasis the uncertainty range
indicates that the perpetrators could have been ingested anytime during a full three-weeks worth of meals
and beverages. People in high-risk groups for Giardia, such as family members of children in day care
centers or promiscuous male homosexuals, have even more possible sources to consider. To indict a
particular wilderness stream or lake under such circumstances, without being able to at least verify that
cysts are indeed there at all, is illogical at best.
The type of diarrhea can help in the diagnosis: If it is liquid and mixes readily with water rather than
floating on top, and is not particularly foul smelling, the problem is likely something other than
giardiasis. Diarrhea that lasts less than a week, untreated, is probably not from giardiasis.
Almost always, giardiasis goes away without treatment 2, 9, 10, 19, 20, 21, 45, 49, 50
If you are unlucky enough to get giardiasis with symptoms, the symptoms will probably be gone in a
week or so without treatment. You may still be harboring the cysts, however, and can unknowingly
spread the disease. Thus, practicing commonly recommended wilderness sanitary habits—defecating
100 feet from water, burying or packing out feces and toilet paper, washing before handling food, etc.—
is an excellent idea.
Looking for cysts and trophozoites in stool specimens under the microscopic has been the traditional
method for diagnosing giardiasis, but it is notoriously unreliable. Now, however, an immunologic test
(enzyme-linked immunosorbent assay or ELISA) for the detection of Giardia antigens in stool samples
is available. The antigens are present only if there is a Giardia infection. ELISA is a big improvement
over the microscopic search, with detection sensitivities of 90 percent or more.
Rare individuals not only do not spontaneously rid themselves of the organisms, but instead develop
serious symptoms of malabsorption, weight loss, ulcer-like stomach pain, and other chronic
disturbances. Fortunately, this occurs in less than 1 percent of those with infestations. These unlucky
people need medical treatment.
Metronidazole (Flagyl) has been the standard medication, with about a 92 percent cure rate.
Recommended by the CDC, it is not approved by the US Food and Drug Administration for giardiasis
because it can have some serious side effects and is potentially carcinogenic. Quinacrine (Atabrine) and
furazolidone (Furoxone) are also prescribed. Tinidazole (Tinebah) is highly effective in single doses and
is widely used throughout the world, but it is not available in the US; it can be purchased over-thecounter
in many developing countries.10, 31
The problem may not be whether you are infected with the parasite but how harmoniously you both
can live together. And how to get rid of the parasite when the harmony does not exist or is lost.9
More on immunity51
The FDA, observing that giardiasis is more prevalent in children than adults, has long suggested that
many individuals seem to have a lasting immunity after infection.52 Furthermore, citizens of cities and
countries where the parasite is numerous have few if any problems with their own water, which also
points to acquired immunity.
If immunity can be acquired, might a vaccine be developed to counter Giardia? The subject has
been explored successfully, and such a vaccine is now commercially available for dogs and cats.14, 53
Effective agents for the vaccine have been prepared from antigens on the surface of trophozoites, as well
as from whole trophozoites themselves. Human response to these antigens has been studied and found
promising.54
Giardiasis has been called a disease of “somes.†Some people do not contract it even from heavily
contaminated sources. Some infestations vanish with no treatment at all. Some people become asymptomatic
carriers. There is some evidence that some people acquire a natural immunity to some strains.
And some strains seem more virulent than others. 16, 19
8
So…what about the Sierra Nevada? 2, 9, 10, 11, 20, 22
In 1984, the US Geological Survey, in cooperation with the California Department of Public Health,
examined water at 69 Sierra Nevada stream sites that were selected in consultation with Park Service
and National Forest managers.55, 56 Forty-two of the stream sites were considered “high-use†(high
probability of human fecal contamination), and 27 were “low-use.†Cysts were found at only 18 (43
percent) of the high-use sites and at 5 (19 percent) of the low-use sites. The highest concentration of
Giardia cysts was 0.108 per liter of water in Susie Lake, south of Lake Tahoe. The next highest was
0.037 per liter near Long Lake, southwest of Bishop. Samples taken in the Mt. Whitney area varied
from 0 (most sites) to 0.013 (Lone Pine Creek at Trail Camp) per liter. The concentration was 0.003 per
liter in Lone Pine Creek at Whitney Portal.
Recall that San Francisco water can contain a concentration approaching 0.12 cysts per liter, a figure
now seen to be higher than that measured anywhere in the Sierra. San Francisco city officials go to great
lengths to assure their citizens that the water is safe to drink and, if true—as it most assuredly must be—
this comparison is quite revealing.
If San Francisco water is reasonably pure, Los Angeles Aqueduct water is even more so, with only
0.03 cysts per liter.36 But 0.03 cysts per liter is a higher concentration of Giardia than all but two of the
69 Sierra sites examined in 1984. Los Angeles Aqueduct water is collected from the streams of the
eastern slopes of the Sierra: the very streams some people worry about when visiting those wilderness
areas. It is interesting to conjecture how individual water sources in the eastern High Sierra can be
seriously contaminated, if those sources are at the same time providing almost perfectly pure water for
the aqueduct.
Taking the highest concentration measured in the Sierra (0.108), we can make some calculations.
The probabilityiv of finding 10 or more cysts in a liter of water—to have at least a one-third chance of
contracting giardiasis—is about 10-17. Ten cysts in 10 liters of water, about 10-7. In fact, one would
have to drink over 89 liters to have a 50 percent probability of ingesting 10 or more cysts.
A word of caution: 1984 was quite a while ago, and areas of the Sierra may be differently
contaminated now: some perhaps more and some perhaps less, depending on visitor population
statistics.
Another reason for caution: A cyst does not just materialize, here and there, now and then. It was
deposited by a mammal at a specific location in the space of a few seconds, along with many of its
companions. They were then dispersed by the dynamic actions of water and wind, with some being
killed by freezing, drying or aging, to eventually reach these low concentrations. The person, who fills
his canteen too close to that location and too soon after the deposit, is unlucky indeed. Fortunately, the
fact that people rarely contract giardiasis after wilderness visits means that this is not at all common.
Later, some tips on “drinking smart†will be given to further reduce this already-minuscule problem.
And another: While so much attention is being given to Giardia, there are more serious organisms
to worry about such as Campylobacter, Cryptosporidia, E. coli and the others mentioned earlier. But are
these likely to be found either? While it is easy to conjecture about such organisms in High Sierra water,
and many people do, searching for evidence of it is fruitless. Each year the CDC documents many
disease outbreaks involving recreational water, but almost all occur from swimming pools, hot tubs and
water parks. Some do occur from lakes, streams and rivers, but these are all at elevations of a few
thousand feet or lower. If people are contracting these diseases from water sources like the High Sierra,
or measuring contaminants in them, they certainly aren’t reporting it (see, for example, References 28
and 29).
iv These calculations involve use of a mathematical tool called the Poisson distribution.
9
A valid claim that giardiasis (or any disease) was contracted from a specific water source requires
affirmative answers to each of the following questions: (1) Was the presence of Giardia confirmed in
the laboratory? (2) Was the person Giardia-free prior to drinking it? (3) Did the suspect water source
contain Giardia cysts in sufficient numbers to cause the disease? The answer to question (1) is easily
obtained, and that to question (2) can usually, but not always, be presumed. In the case of wilderness
water, however, the answer to question (3) is virtually never pursued.
In an informative study, investigators contacted thousands of visitors to one of the high-use sites
during the summers of 1988 through 1990. Water samples taken on 10 different dates at each of three
locations exhibited Giardia cyst concentrations between 0 and 0.062 (average 0.009) per liter. A goal
was to enlist volunteers who were cyst-negative before their trip, verified by stool analysis, and later
determine what fraction were cyst carriers after the trip. Unfortunately, stool collection is not a
particularly enjoyable task, and only 41 people agreed to participate. Of these, two acquired Giardia
cysts during their trip, but neither came down with symptoms. Six of the others exhibited post-visit
intestinal symptoms, but none tested positive for Giardia (interestingly, all six had filtered their water).
In sum, no cases of laboratory-confirmed symptomatic giardiasis were found.57
Beyond the Sierra
Outside of the Sierra, Giardia cysts in concentrations “as high as four per gallon†v have been
detected in untreated water in northeastern and western states.58 But, even with this concentration, one
would have to consume over nine liters of water to have a 50 percent chance of ingesting 10 or more
cysts.
Indeed, there may be as much unwarranted hysteria surrounding Giardia in wilderness water in these
other areas as there is for the Sierra. For example, an oft-cited report describing acquisition of the
disease by 65 percent of a group of students hiking in the Uinta Mountains of Utah59 is now viewed with
considerable skepticism. Specifically, the attack rate of 65% was far beyond that usually seen with
water-contracted giardiasis, no cysts were identified in the suspect water, there was no association
between water consumption rates and the likelihood of the disease, and the authors categorically
discounted food-borne or fecal-oral spread, stating that it had never been reported (which was correct at
the time).3
Summary figures
Here are some of the figures discussed in various places above. Units are cysts per liter.
Concentration Comment
~1000 Typical swimming pool contamination
~100 Giardiasis is plausiblevi
~10 Minimum needed to contract giardiasisvi
~1 Some wilderness water outside California
0.12 Some San Francisco water
0.108 Worst Sierra Nevada water
0.030 Some Los Angeles Aqueduct water
0.013 Mt. Whitney at Trail Camp
0.003 Mt. Whitney at Whitney Portal
Table 3. Giardia Cyst Concentrations Discussed in This Report
v Quoted from the original.
vi If one liter is consumed.
10
If not from the water, from where?
The water that wilderness travelers are apt to drink, assuming that they use a little care, seems almost
universally safe as far as Giardia is concerned. The study referred to earlier,3 in which the researchers
concluded that the risk of contracting giardiasis in the wilderness is similar to that of a shark attack, is
telling. What they did find is that Giardia and other intestinal bugs are for the most part spread by direct
fecal-oral or food-borne transmission, not by contaminated drinking water. Since personal hygiene often
takes a backseat when camping, the possibility of contracting giardiasis from someone in your own
party—someone who is asymptomatic, probably—is real. Recalling that up to 7 percent of Americans,
or up to 1 in 14, are infected, it is not surprising that wilderness visitors can indeed come home with a
case of giardiasis, contracted not from the water…but from one of their friends.
This theme, that reduced attention to personal hygiene is an important factor for contracting
giardiasis in the wilderness, is becoming more frequent in the literature.3, 13, 20, 57, 60
Personal observations
I started visiting the Sierra Nevada in the early 1950s and have spent much of my free time there. I
have never treated the water, and I have never had symptoms of giardiasis as a consequence of my visits.
My many similarly active friends and acquaintances also drink the water, in the High Sierra and
elsewhere, with no ill effects. But we are always careful to “drink smartâ€:
· Drink from large streams whenever possible, preferably those entering from the side rather
than those paralleling the trail.
· Water in fast-flowing streams is safer because any contaminants present at any location are
swept downstream, being quickly displaced by presumably clean water from above.vii
· Water at higher elevations is safer, partly because of reduced human and animal presence,
and partly because water flowing to lower elevations has a chance to pick up more
contaminants the farther it travels.
· Taking water from a lake is best advised at the inlet, with the next best place at the outlet.
Inlet water has a tendency to flow somewhat directly to the outlet, undergoing little mixing
with the lake water as a whole.
· Few Giardia cysts survive harsh Sierra winters. Contamination begins essentially anew each
year, so springtime water is safer than summer or fall.
· The colder the water is, the more likely it is freshly melted, meaning less opportunity for
contamination.
· Because filtration of water through soil removes Giardia cysts, deep well water is considered
safe.10 By implication, springs in the wilderness should be, too.
· One would think that, after a heavy snow year when streams run full and long, some kind of
“flushing out†of lakes and streams must be occurring. Conversely, it makes sense to be
more cautious in dry years.
· Avoid water that likely could have passed through an area subject to heavy human or animal
use.
· If it doesn’t look good—it’s cloudy or has surface foam—treat it or don’t drink it.
vii “In rivers, the water that you touch is the last of what has passed and the first of that which comes; so with present time.â€â€”
Leonardo da Vinci
11
If in doubt, treat it—but how? While useful in many instances, chlorine is not very effective for
Giardia disinfection, which is why swimming pools are primary sources for the disease. The best filters
work, although they are costly, heavy, and bulky, and many are somewhat awkward to use.11, 61
Boiling is usually inconvenient, but if you are preparing hot water for meals anyway, you may as
well take advantage. Giardia cysts are highly susceptible to heat, and simply bringing water to 150° F.
for five minutes, 176° for a minute, or 190° momentarily, will kill them.11, 13 But boiling for a few
minutes is usually recommended because of the other organisms that may be present. At 10,000 feet
elevation, water boils at 194°; at 14,000 feet, 187°; so longer boiling times are recommended at altitude.
Iodine is perhaps the best treatment choice, being inexpensive, convenient, and safe. Iodine is
effective against most bacteria and viruses, too—and over a wide range of temperatures. But
Cryptosporidium may be resistant to iodine. A popular system uses iodine crystals in a saturated water
solution. Methods exist to mask or remove the iodine taste.
Does it matter what the organism is, if you are going to treat the water anyway? Filters effective for
Giardia (a protozoan) are not always effective for Campylobacter (a bacterium). Chlorine may work
against Campylobacter, but most of the time is ineffective against Giardia. You need to know your
enemy.
Advice for visitors
On the subject of drinking water safety in the Sierra Nevada, we are told, “An intestinal disorder
called giardiasis may be contracted from drinking untreated ‘natural’ water. This disorder is caused by a
microscopic organism, Giardia lamblia, the cystic form of which is often found in mountain streams and
lakes. Such waters may look, smell and taste good, but you should be aware of possible danger.â€62 We
are instructed to filter or boil all drinking water.62, 63
Many people make the leap to a belief, approaching paranoia, that every water source is seriously
contaminated. I have seen day hikers to Mt. Whitney carrying 3 gallons of water from the grocery store.
I have seen people filtering water for washing their dishes. If their filter breaks down on a hike, some
will endure thirst in their rush to camp to boil water, passing pristine streams along the way. They do
not trust fresh snow, and they certainly do not trust the trickles coming from it.
In 2001 I wrote to the Inyo National Forest office, asking for evidence that the water quality could be
as questionable as they suggest. The Forest Supervisor wrote back: “As to whether or not Giardia
exists in the Sierra, we are not in a position to state a fact one way or the other.â€64 This is a significant
admission. So why do they persist in informing everyone that giardiasis is a potential hazard when
visiting the Sierra Nevada?
First: They know that some waters can be contaminated by something, and Giardia is the organism
on people’s minds so needs no elaboration. Contaminated water, with Giardia or otherwise, is certainly
possible at lower elevations and in some locales. Noting that novice hikers in particular cannot be
expected to make correct choices of which sources may be safe to drink, they suggest treating all water.
Second: If a person believes, albeit incorrectly, that they contracted giardiasis from Sierra Nevada
water, they cannot claim they weren’t informed. Potential confrontations are therefore avoided.
Third: It is the CDC’s Division of Parasitic Diseases that advises the national park and forest
managers in devising and revising those agencies’ warnings and recommendations.8 It is not surprising
that this office would take a very conservative stance.
Unfortunately, the result is an incorrect perception of overall water quality in the Sierra by the
general public, tainting the image of this pristine wilderness. It also means that if someone contracts a
gastrointestinal illness after a visit, they will be more apt to blame the water, having been “forewarnedâ€
that all water is suspect. And so the egregious myth is perpetuated.
But what do rangers say off the record, and what practices do they themselves follow? Here are
three data points:
12
· At a National Forest display booth recently, I approached a wilderness ranger I was acquainted
with, one who had spent a lot of time in the Mt. Whitney district. The ranger’s initial greeting
was “You are right on about the water. It’s just that, as an agency, we can’t say it. I haven’t
filtered water up there for years.†65
· After reading the then-current version of this paper, a National Park ranger wrote me “I've been a
backcountry ranger in Sequoia and Kings Parks for 30 years, and your article matches my
experience. My wife and I have never treated the water.†He went on to say that almost none of
the backcountry professionals he’s worked with over the years do, either.66
· One of my long-time climbing companions recently retired from the Inyo National Forest after 34
years, much of it as a wilderness ranger. My friend and I have always followed the same
protocols regarding the water.
Untreated Sierra Nevada water is, almost everywhere, safe to drink—if you “drink smart.†If you
don’t “drink smart†you may ingest diarrhea-causing organisms. But they almost certainly won’t be
Giardia.
Still, because up to 1 in 14 of us carries the Giardia parasite, we all need to do what we can to keep
the water pure. Defecate away from water, and bury it or carry it out.
Camp cooks in particular need to pay special attention to cleanliness. Wash hands thoroughly,
especially before handling utensils and preparing meals.
In summary: High Sierra water has too few Giardia cysts to pose a genuine risk. Even if you drink
water elsewhere where the concentration is high, you probably won’t get giardiasis. If you do get
giardiasis, you probably won’t have any symptoms. If you have symptoms, they will probably go away
by themselves in a week or so. If they don’t or you develop serious persistent symptoms, you should
seek medical treatment. Finally, those contracting giardiasis may develop immunity to it, thus lowering
the likelihood that they will get it again.
There is certainly no reason for anxiety about giardiasis. Less than 1 percent of those who have an
infestation, or about 5 percent of those with symptoms, needs medical help.
Closing thoughts
Wilderness managers are in a position to educate the outdoor public about the real culprit in the
Giardia lamblia story: inadequate human hygiene. When they acknowledge that Sierra Nevada water
has fewer Giardia cysts than, for example, the municipal water supply of the city of San Francisco,
maybe they will turn their attention to it. The thrust of the following observation is long overdue:
“Given the casual approach to personal hygiene that characterizes most backpacking
treks, hand washing is likely to be a much more useful preventative strategy (for Giardia)
than water disinfection!
viii This simple expedient, strictly enforced in health care, child
care, and food service settings, is rarely mentioned in wilderness education materials.â€3
We are cautioned, “Wilderness water might be contaminated, so you should always treat it.†Given
the well-documented instances when municipal water treatment systems have failed or been
contaminated, the same warning could apply to drinking water—with much more validity. But the
government does not say, “Drinking water might be contaminated, so you should always treat it.†Nor
should they. We fill our glass from the tap without concern, well aware that on rare occasions our
confidence is breached. We accept the minuscule risk.
viii Emphasis is in the original.
13
Yet a few Giardia cysts are found in some wilderness waters, with no evidence that it is even
remotely a problem, and an all-encompassing warning is issued.
How much more useful, candid and factual information would be!
About the author
The author is an active mountaineer who made his first trip into the Sierra Nevada in 1952 to climb
Mt. Whitney, and he repeats this climb several times annually. He has a bachelor’s degree in Physics
from UC-Berkeley, and a PhD in Aeronautical and Astronautical Engineering from Stanford University.
In the course of making well over a thousand ascents of hundreds of individual Sierra Nevada
mountains, he has never filtered or otherwise treated the water, and he has never contracted symptoms of
giardiasis. Retired since 1990, he is now able to fully indulge in his favorite pastime and spends more
time up there, drinking freely out of the lakes and streams, than ever before.
References
1 Erlandsen, S. L. et al: Investigation into the Life Cycle of Giardia Using Videomicroscopy and Field
Emission SEM. In Giardia, The Cosmopolitan Parasite, edited by B. E. Olson, M. E. Olson and P. M.
Wallis. CABI Publishing, 2002
2 Wilkerson, James A.: Medicine for Mountaineering and Other Wilderness Activities. The
Mountaineers, 4th edition, 1992
3 Welch, Thomas R. and Welch, Timothy P.: Giardiasis as a Threat to Backpackers in the United
States: A Survey of State Health Departments. Wilderness and Environmental Medicine, Vol. 6, 1995
4 Rockwell, Bob: Giardiasis: Let’s Be Rational About It. Summit Magazine, Nov./Dec. 1987
5 Rockwell, Bob: Giardia Lamblia and Giardiasis, with Implications for Sierra Nevada Visitors.
California Mountaineering Club Newsletter, Vol. 7 no. 2, April 1996
6 Rockwell, Bob: Giardia Update. California Mountaineering Club Newsletter, Vol. 8 no. 2, April 1997
7 Rockwell, Robert L.: Giardia Lamblia and Giardiasis, With Particular Attention to the Sierra
Nevada. Unpublished note, 18 October 2001
8 Thompson, Kalee: Water Wary? Your Backcountry H2O May be Safer Than You Think. National
Geographic Adventure, June/July 2002
9 Juranek, Dennis D.: Giardiasis. Centers for Disease Control and Prevention, 1990
10 Swartz, Morton N.: Intestinal Protozoan Infections. Scientific American Medicine, 1994
11 Kerasote, Ted: Great Outdoors; Drops to Drink. Audubon, July 1986
12 EOA, Inc.: Microbial Risk Assessment for Reclaimed Water. Final Report. Prepared in Association
with the University of California School of Public Health, Oakland, CA. May 1995
13 Backer, Howard D.: Giardiasis: An Elusive Cause of Gastrointestinal Distress. The Physician and
Sportsmedicine, Vol. 28 no. 7, July 2000
14 Thompson, R. C. A.: Towards a Better Understanding of Host Specificity and the Transmission of
Giardia: the Impact of Molecular Epidemiology. In Giardia, The Cosmopolitan Parasite, edited by B.
E. Olson, M. E. Olson and P. M. Wallis. CABI Publishing, 2002.
15 DeReigner D. P., et al: Viability of Giardia Cysts Suspended in Lake, River, and Tap Water. Applied
Environmental Microbiology, Vol. 55 no. 5, 1989
16 Olson, M. E: Human and Animal Pathogens in Manure. Conference on Livestock Options for the
Future. Winnepeg, Manitoba, June 2001
17 Olsen, M. E., et al: Survival of Giardia Cysts and Cryptosporidium Oocysts in Water, Soil and Cattle
Feces. American Association of Veterinary Parasitologists, 43rd Annual Meeting, 1998
18 National Food Processors Institute: Fact Sheet on Enteric Protozoa and the Food Industry. October
1998.
14
19 Moser, Penny Ward: Danger in Diaperland. Health, September/October 1991
20 Suk, Thomas: Eat, Drink and Be Wary. California Wilderness Coalition
21 Berkow, Robert, MD, Editor: Parasitic Infections—Giardiasis. The Merck Manual, 14th edition,
1997
22 Wilkerson, James and Caulfield, Page: Wilderness Water Disinfection. Appalachia, No. 4, Winter
1985-86
23 Bemrick, W. J.: Some Perspectives on the Transmission of Giardiasis. Giardia and Giardiasis:
Biology, Pathogenesis and Epidemiology, edited by Erlandsen and Meyer, Plenum Press, 1984
24 Feachem, R. G., et al: Sanitation and Disease: Health Aspects of Excreta and Wastewater
Management. John Wiley and Sons, 1983
25State of California Department of Public Health: Communicable Diseases in California, 1994, 1995.
26 Erlandsen, S. L. and Bemrick, W. J.: Waterborne Giardiasis: Sources of Giardia Cysts and Evidence
Pertaining to their Implication in Human Infection. In Advances in Giardia Research, edited by P. M.
Wallis and B. R. Hammond. University of Calgary Press, 1988.
27 Vitusis, Ziegfried, chief microbiologist at the EPA. Quoted in Backpacker, Dec. 1996
28 Lee, S. H. et al: Surveillance for Waterborne-Disease Outbreaks—United States, 1999-2000. Centers
for Disease Control and Prevention, November 22, 2002
29 Kramer, Michael H. et al: Surveillance for Water-Borne Disease Outbreaks—United States, 1993-
1994. Centers for Disease Control and Prevention, 1996
30 Kappus KD, Lundgren RG and Juranek DD: Intestinal Parasitism in the United States: Update on a
Continuing Problem. American Journal of Tropical Medicine and Hygiene. Vol. 60 no. 6, 1994
31 Centers for Disease Control and Prevention: Giardiasis Surveillance—United States, 1992—1997.
August 2000.
32 Pickering, L. K. et al: Occurrence of Giardia lamblia in Children in Day Care Centers. Journal of
Pediatrics, Vol. 104, 1984
33 Porter, J. D. et al: Giardia Transmission in a Swimming Pool. American Journal of Public Health,
Vol. 78 no. 6, 1988
34 Stanford Utilities Division and San Francisco Public Utilities Commission: 2000 Annual Water
Quality Report.
35 City of Fairfield, California: 2001 Water Quality Report.
36 Los Angeles Department of Water and Power: Annual Water Quality Report for 2000.
37 Bean, N. H., PhD et al: Foodborne Disease Outbreaks, 5-year Summary, 1983 – 1987. Centers for
Disease Control and Prevention, March 1990
38 Osterholm, M. T. et al: An Outbreak of Foodborne Giardiasis. The New England Journal of
Medicine, Vol. 304, 1981
39 University of California Agriculture and Natural Resources: Giardia and Cryptosporidium Levels are
Low in Sierra Nevada Pack Stock. News Tips, December 1999
40 O’Handley, R. M.: Giardia in Farm Animals. In Giardia, The Cosmopolitan Parasite, edited by B. E.
Olson, M. E. Olson and P. M. Wallis. CABI Publish


Where there's a hobble, there's hope.
 
Posts: 369 | Location: Homer, Alaska | Registered: 04 February 2004Reply With Quote
One of Us
posted Hide Post
Thank You Gentlemen !
 
Posts: 497 | Location: PA | Registered: 24 May 2005Reply With Quote
one of us
Picture of jackfish
posted Hide Post
I knew there was a reason I got the MSR Sweetwater Purifier.


You learn something new everyday whether you want to or not.
 
Posts: 1080 | Location: Western Wisconsin | Registered: 21 May 2002Reply With Quote
one of us
Picture of Redlander
posted Hide Post
quote:
Originally posted by concho:
Question to all ! what has happened to our water since the mid 1800's and before ? Cattle drives ,Wagon trains , gold rush seekers ,settling in new lands in the old west , how did people treat the water they drank back then ? on this North American continent ?


You get into the same predicament if you go to a place like Mexico (or any non-first rate, industrialized country) and drink the the water. Oftentimes it is not treated to high enough standards and travelers get sick. The locals (natives) do fine because their immune systems have built up to deal with the "wee beasties" in the water. Also, if the local's immune system isn't hardy enough, they die as a child. In much the same way, pioneers of the US had a very high child death rate. Ever hear of the cholera epidemics on wagon trains - you catch that from the water. So, in fact, much of the water was not treated - and pioneers died by the hundreds and thousands because of it.


If you are going to carry a big stick, you've got to whack someone with it at least every once in while.
 
Posts: 842 | Location: Anchorage, AK | Registered: 23 January 2004Reply With Quote
One of Us
posted Hide Post
Well this will probably get a lot of argument but my opinion has always been the reason there is so much concern about water purity now a days is two fold. First is the fact we have so much media coverage and all this vast communication so we get a blown up idea of how bad a problem is. Second is my belief that most people use treated water now and have for a couple generations. I think this has broken down natural resistance. Just as you read about native africans being able to eat rotten meat that would half kill us the same is true of those who have a water supply that is sterile. Out here in the country where we all use wells I never hear of anyone having a problem, we all drink out of the creeks and ponds (yes even beaver ponds) with no ill affects. Boot strap biology perhaps but true none the less in my opinion
 
Posts: 129 | Location: Darrington Washington | Registered: 10 January 2005Reply With Quote
one of us
Picture of jackfish
posted Hide Post
quote:
Originally posted by TrapperBob:
Well this will probably get a lot of argument...we all drink out of the creeks and ponds (yes even beaver ponds) with no ill affects.
All it takes is one dead animal upstream and you could be singing a different tune. Perhaps in Heaven.


You learn something new everyday whether you want to or not.
 
Posts: 1080 | Location: Western Wisconsin | Registered: 21 May 2002Reply With Quote
one of us
posted Hide Post
Filter + Boil.

It's clean, it tastes better, it's 99.9999% safe (boiling kills viruses), it's fool proof.

It's quicker - you can filter, boil, and let water cool; a whole lot quicker than the 4 hours it takes for purifing tabs to work. I am not sure about the time on the Miox or Steripen, but I think it takes a while as well, and it has not been filtered so you are drinking a lot of nasty tasting sediment.

"the Steripen will kill viruses. I believe the MSR Miox system will too"

But will they filter out sediment and improve taste? No.

Just my .02 cent.

So for me it goes like this: Use my Katadyn Guide to Filter, then Boil, then add powdered Gatorade or Tea. Then Drink. dancing


Thanks, Mark G
Everything that lives and moves will be food for you. Just as I gave you the green plants, I now give you everything. Genesis 9:3
 
Posts: 358 | Location: Stafford, Virginia | Registered: 14 August 2001Reply With Quote
  Powered by Social Strata  
 

Accuratereloading.com    The Accurate Reloading Forums    THE ACCURATE RELOADING.COM FORUMS  Hop To Forum Categories  Hunting  Hop To Forums  Backpack Hunting    US Army Tests of Commercial Water Filters

Copyright December 1997-2023 Accuratereloading.com


Visit our on-line store for AR Memorabilia